始创于2000年 股票代码:831685
咨询热线:0371-60135900 注册有礼 登录
  • 挂牌上市企业
  • 60秒人工响应
  • 99.99%连通率
  • 7*24h人工
  • 故障100倍补偿
您的位置: 网站首页 > 帮助中心>文章内容

数据分析不使用Hadoop的五大理由

发布时间:  2012/8/18 19:48:20

我一度是Hadoop的忠实拥护者。我喜欢它可以轻而易举地处理PB级别的数据,喜欢它可以将运算扩展到数千个节点的分布式计算能力,也喜欢它存储和加载数据的灵活性。但在经历过一系列的探索与使用之后,我对Hadoop非常失望。

下面就是我为什么不使用Hadoop做数据分析的见解。

Hadoop只是一个框架,而非一种完备的解决方案。人们期望Hadoop可以圆满地解决大数据分析问题,但事实是,对于简单的问题Hadoop尚可,对于复杂的问题,依然需要我们自己开发Map/Reduce代码。这样看起来,Hadoop与使用J2EE编程环境开发商业分析解决方案的方式别无二致!

Pig和Hive都非常不错,但却受到架构的局限。Pig和Hive都是设计精巧的工具,它们可以让人迅速上手,提高生产力。但它们毕竟只是一种工具,用于将常规的SQL或文本转化成Hadoop环境上的Map/Reduce查询。Pig和Hive受限于Map/Reduce框架的运作性能,尤其是在节点通信的情况下(如排序和连接),效率更为低下。

没有软件成本,部署相对容易,但维护和开发的代价极大。Hadoop非常受欢迎的理由在于,我们可以自由的下载、安装并运行。由于它是一个开源项目,所以没有软件成本,这使得它成为一种非常吸引人的解决方案,用于替代Oracle和Teradata.但是一旦进入维护和开发阶段,Hadoop的真实成本就会凸显出来。

擅长大数据分析,却在某些特定领域表现不佳。Hadoop非常擅长大数据分析,以及将原始数据转化成应用(如搜索或文本挖掘)所需的有用数据。但如果我们并不很清楚要分析的问题,而是想以模式匹配的方式探索数据,Hadoop很快会变得一塌糊涂。当然,Hadoop是非常灵活的,但需要你花费较长的时间周期去编写Map/Reduce代码。

并行处理的性能极佳,但不排除特例。Hadoop可以将数千个节点投入计算,非常具有性能潜力。但并非所有的工作都可以进行并行处理,如用户交互进行的数据分析。如果你设计的应用没有专门为 Hadoop集群进行优化,那么性能并不理想,因为每个Map/Reduce任务都要等待之前的工作完成。

综上所述,Hadoop的确是一个令人震惊的计算框架,它可以进行大规模的数据分析。另一方面,这也意味着数据分析工作必须建立在大量的编程工作之上。


本文出自:亿恩科技【www.enkj.com】

服务器租用/服务器托管中国五强!虚拟主机域名注册顶级提供商!15年品质保障!--亿恩科技[ENKJ.COM]

  • 您可能在找
  • 亿恩北京公司:
  • 经营性ICP/ISP证:京B2-20150015
  • 亿恩郑州公司:
  • 经营性ICP/ISP/IDC证:豫B1.B2-20060070
  • 亿恩南昌公司:
  • 经营性ICP/ISP证:赣B2-20080012
  • 服务器/云主机 24小时售后服务电话:0371-60135900
  • 虚拟主机/智能建站 24小时售后服务电话:0371-60135900
  • 专注服务器托管17年
    扫扫关注-微信公众号
    0371-60135900
    Copyright© 1999-2019 ENKJ All Rights Reserved 亿恩科技 版权所有  地址:郑州市高新区翠竹街1号总部企业基地亿恩大厦  法律顾问:河南亚太人律师事务所郝建锋、杜慧月律师   京公网安备41019702002023号
      0
     
     
     
     

    0371-60135900
    7*24小时客服服务热线